LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - NOVEMBER 2014

CH 3809 / 3813 - COORDINATION CHEMISTRY

Date: 30/10/2014	Dept. No.	Max.: 100 Marks
Time: 09:00-12:00	l	

Part-A

Answer all questions. Each question carries two marks:

(10x2=20)

- 1. The thermodynamic stability of high-spin complexes of $d^{0,5,10}$ metal ions are lower than that of other d^n metal ions under identical ligand framework. Comment upon this observation.
- 2. It is exceedingly difficult to synthesize low-spin tetrahedral complexes of first row transition metals. Rationalize.
- 3. In the presence of moderate to strong field ligands Co(II) has a strong tendency to get oxidized to the Co(III) state in aqueous solution. Give reason.
- 4. The CN stretching vibration in cyano complexes occur at higher energy than that of free cyanide ion. Explain.
- 5. Differentiate *trans*-effect and *trans*-influence.
- 6. What is π -acceptor series? How is it constructed?
- 7. Transition metal complexes are invariably colored, while their cabonyls are mostly colorless. Give reason.
- 8. The complex [cpFe(CH₂=CH₂)(CO)₂] when reacted with a nucleophile, the coordinated cyclopentadienyl ligand remains a spectator, whereas ethylene reacts. Explain.
- 9. What are (i) exciflex and (ii) excimer?
- 10. What is intensity stealing?

Part-B

Answer eight questions. Each question carries five marks:

(8x5=40)

- 11. Explain linkage- and optical isomerism in coordination compounds.
- 12. d^6 Metal ions have a strong tendency to form octahedral complexes, while d^8 metal ions have a strong tendency to form square planar complexes with strong ligands. Explain with the aid of qualitative crystal field splitting energy level diagrams.
- 13. How are the following differentiated by IR spectroscopy: (a) nitro- and nitrito complexes and (b) thiocyanato- and isothiocyanatocomplexes.
- 14. State Jahn Teller theorem. Explain static dynamic Jahn Teller effect with an example.
- 15. What are Orgel diagrams? Construct the Orgel diagram for $d^{3,8}$ metal ions in O_h and T_d geometries.
- 16. Explain the mechanism of a photochemical reaction of a coordination compound when it is irradiated at its (a) charge transfer band (b) LF band.
- 17. Explain the electronic spectral features of high-spin octahedral and tetrahedral complexes of d^{l-9} metal ions.
- 18. Give an account of the reactivity of organometallic complexes of cyclobutadiene and benzene.
- 19. Explain oxidative addition and reductive elimination reactions with examples.
- 20. How is *cis*-platin synthesized? Explain the mechanism.
- 21. Explain the mechanism of Ziegler-Natta polymerization.
- 22. Explain the structure and functions of superoxide dismutase.

Part-C

Answer four questions. Each question carries ten marks:

(4x10=40)

- 23a. Identify the metal orbitals and LGOs suitable for σ and π -bonding in octahedralcomplexes of transition metal ions. Construct a qualitative MO energy level diagram for σ -bonding.
 - b. Explain π -bonding by π -acceptor ligands with transition metal ions with the help of MO theory.

(6+4)

- 24. Explain the principles of angular overlap model. Show that $\Delta_t = 4/9 \Delta_o$ with the help of this theory.
- 25a. What are electron transfer reactions? Differentiate complimentary and non-complimentary electron transfer reactions with examples. (3+7)
 - b. Explain the mechanisms of electron transfer reactions in coordination compounds with examples. Mention the various factors which affect these mechanisms.
- 26. Discuss the various mechanisms of substitution reactions of octahedral and tetrahedral complexes.
- 27a. Explain the structural features of hemoglobin and myoglobin. Explain the mechanism of oxygen transport and storage by these heme proteins. (6+4)
 - b. Write a note on copper proteins.
- 28a. The epr spectrum of bis(salicylaldimine)copper(II) (spin of ⁶³Cu is 3/2) consists of four sets of eleven lines each. Interpret the spectrum and substantiate your result with the help of experimental evidences.
 - b. How would you differentiate isotropic and anisotropic systems by epr spectroscopy? Mention the causes of anisotropy in transition metal complexes.
